Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity
نویسندگان
چکیده
Wavelet methods allow to combine high order accuracy, eecient preconditioning techniques and adaptive approximation, in order to solve eeciently elliptic operator equations. Many diiculties remain, in particular related to the adaptation of wavelet decompositions to bounded domains with prescribed boundary conditions, as well as the possibly high constants in the O(1) preconditioning. In this paper we consider second order operators on tensor product domains. For such domains, we discuss the construction of high order multiresolution approximation and wavelet bases, and in particular the choice of the wavelets near the boundary in order to optimize the eeciency of the diagonal preconditioning of elliptic operators. In order to improve the constants obtained by such simple diagonal preconditioning, we propose an almost diagonal preconditioner based on solving local Petrov-Galerkin problems. The eeciency of this method is illustrated by solving elliptic second order problems with variable or constant coeecient and homogeneous boundary conditions on a uniform discretization. Finally, we propose a coupling of the iterative solver with an adaptive space reenement technique. On the Laplacian model problem, our experiments show that this algorithm generates an optimal nonlinear approximation of the solution. Both isotropic and anisotropic decompositions are considered and compared in terms of preconditioning and compression of the solution. R esum e: Pour la r esolution d' equations elliptiques, les m ethodes d'ondelettes permettent d'obtenir a la fois des approximations d'ordre elev e, des techniques de pr econditionnement et des strat egies d'approximations adaptatives simples et eecaces. De nombreuses diicult es de mise en oeuvre de ces m ethodes r esident tou-jours dans la d eenition de bases d'ondelettes avec conditions aux limites sur des domaines g en eraux, ainsi que dans l'optimisation des constantes du pr econditionnement O(1). Dans cet article, on consid ere des probl emes elliptiques d'ordre 2 sur des domaines tensoriels. Pour de tels domaines, on etudie la d eenition de bases d'ondelettes avec ordre d'approximation elev e, en mettant l'accent sur le choix des ondelettes pr es de la fronti ere pour optimiser le pr econditionnement diagonal des op erateurs elliptiques. AAn d'am eliorer les performances du pr econditionnement diagonal en base d'ondelettes, nous introduisons un pr econdition-nement presque diagonal obtenu en r esolvant des probl emes de Petrov-Galerkin locaux. L'eecacit e de ces m ethodes est mise en valeur en r esolvant, par une discr etisation uniforme, des probl emes elliptique d'ordre 2 a coeecients constants ou variables …
منابع مشابه
Wavelet Least Square Methods for Boundary Value Problems
This paper is concerned with least squares methods for the numerical solution of operator equations. Our primary focus is the discussion of the following conceptual issues: the selection of appropriate least squares functionals, their numerical evaluation in the special light of recent developments of multiscale and wavelet methods and a natural way of preconditioning the resulting systems of l...
متن کاملPRECONDITIONING OF DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS A Dissertation by VESELIN
Preconditioning of Discontinuous Galerkin Methods for Second Order Elliptic Problems. (December 2007) Veselin Asenov Dobrev, B.S., Sofia University Chair of Advisory Committee: Dr. Raytcho Lazarov We consider algorithms for preconditioning of two discontinuous Galerkin (DG) methods for second order elliptic problems, namely the symmetric interior penalty (SIPG) method and the method of Baumann ...
متن کاملMultilevel Filtering Preconditioners: Extensions to More General Elliptic Problems
The concept of multilevel filtering (MF) preconditioning applied to second-order selfadjoint elliptic problems is briefly reviewed. It is then shown how to effectively apply this concept to other elliptic problems such as the second-order anisotropic problem, biharmonic equation, equations on locally refined grids and interface operators arising from domain decomposition methods. Numerical resu...
متن کاملPrecondit ioning indefinite systems arising from mixed finite element discretization of second-order elliptic problems
We discuss certain preconditioning techniques for solving indefinite linear systems of equations arising from mixed finite element discretizations of elliptic equations of second order. The techniques are based on various approximations of the mass matrix, say, by simply lumping it to be diagonal or by constructing a diagonal matrix assembled of properly scaled lumped element mass matrices. We ...
متن کاملSubstructuring Preconditioning for Finite Element Approximations of Second Order Elliptic Problems. Ii. Mixed Method for an Elliptic Operator with Scalar Tensor
Abstract This work continues the series of papers in which new approach of constructing alge braic multilevel preconditioners for mixed nite element methods for second order elliptic problems with tensor coe cients on general grid is proposed The linear system arising from the mixed meth ods is rst algebraically condensed to a symmetric positive de nite system for Lagrange multipliers which cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 1999